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Abstract. We consider the critical behaviour of binary mixtures described by the ϕ4 Landau–
Ginzburg free energy and subject to an external shear flow. The critical temperature is calculated as
a function of the shear rate γ in the limit of an infinite number of components of the field. The two
cases with conserved and non-conserved order parameter are analysed. The values of the critical
temperature depend on the dynamics considered. In particular, at small γ , the critical temperature
grows as γ 1/4 in the conserved case and as γ 1/2 in the non-conserved case.

1. Introduction

There are many physically relevant cases of statistical systems where an external driving field is
also the source of a flux of energy through the system in stationary conditions. In systems where
an order–disorder transition can occur, a natural question to ask is how the critical temperature
depends on the strength of the driving field [1]. This question assumes a particular experimental
relevance for the case of a binary mixture subject to an external shear flow [2]. The knowledge
of generalized phase diagrams in the two-parameter space of temperature and shear rate is
important for the study of the rheological properties of fluid mixtures [3].

Many experiments and theories have shown that the critical properties of a binary mixture
are strongly affected by a shear flow [4]. If hydrodynamic fluctuations are neglected, it is
expected that the critical fluctuations are suppressed by the shear flow. This implies the raising
of the critical temperature Tc together with a mean-field behaviour of the critical exponents.
This problem has been studied by Monte Carlo simulations [5], but it was not possible to
extract from simulations the quantitative behaviour of Tc due to numerical uncertainties and
the relevance of finite-size effects [6].

In this paper we analyse the effects of the shear on the critical temperature of a binary
mixture described in thermodynamic equilibrium by the usual ϕ4 Landau–Ginzburg free
energy. We study the critical behaviour of this system in the limit of an infinite number
of components of ϕ. This approximation, which allows us to perform explicit calculations is
often used in equilibrium statistical mechanics to calculate critical properties [7], and has also
been proved to be very useful in dynamical problems such as phase separation with applied
flows [8].

In the case of a binary fluid mixture the order parameter, which is the total difference of
concentrations between the two components of the mixture, is conserved during the evolution
of the system. In this paper we consider both the cases with conserved and not conserved order
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parameters. The second case is relevant for the behaviour of liquid crystals in a shear flow
[9]. We will show that the conservation law affects the behaviour of the critical temperature
which depends on the particular dynamics considered. We calculate this behaviour explicitly
at small values of the shear rate.

The paper is organized as follows. In the next section we describe our model and write the
equations for the critical temperature in the conserved and non-conserved cases. In section 3
we solve these equations for the binary fluid and in section 4 for the non-conserved case. A
discussion with conclusions will follow.

2. The model and the equations for the critical temperature

We consider a system in d = 3 spatial dimensions described at equilibrium by the Ginzburg–
Landau free-energy functional

F{ϕ} =
∫

ddr

{
a

2
ϕ2 +

b

4
ϕ4 +

1

2
( �∇ϕ)2

}
(1)

where ϕ is the order parameter field which represents the concentration difference between
the two components of the mixture. The parameter b is always positive, while the value of a

distinguishes between the ordered and the high-temperature disordered state.
The dynamics of the model is governed by the convection–diffusion equation [4]

∂ϕ

∂t
+ �∇ · (ϕ�v) = −�

δF
δϕ

+ η (2)

where � is the kinetic coefficient and η is a Gaussian white noise with expectations

〈η(�r, t)〉 = 0

〈η(�r, t)η(�r ′, t ′)〉 = 2T �(�r)δ(�r − �r ′)δ(t − t ′).
(3)

We study both the cases with conservation of the order parameter,

�(�r) = −�∇2 (COP) (4)

and without conservation of the order parameter,

�(�r) = � (NCOP). (5)

The imposed velocity field is of the form

�v = γy�ex (6)

where γ is the spatially homogeneous shear rate and �ex is a unit vector in the flow direction.
The presence of the cubic term in the derivative δF/δϕ prevents an exact solution of

equation (2), as in the case without shear [10]. However, a solvable model is recovered in the
so-called N → ∞ limit, which amounts to the factorization of the cubic term of equation (2)
as

ϕ3 → 〈ϕ2〉ϕ. (7)

It is possible to show [7] that the substitution (7) becomes exact in models with a vectorial
order parameter when the number N of the components of the field becomes infinite. Since
〈ϕ2〉 = S(t) does not depend on space, due to translational invariance, the substitution (7)
formally linearizes the theory.
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A quantity of interest for the critical properties of the model, related to the inverse
susceptibility, is the structure factor

C(�k, t) = 〈ϕ(�k, t)ϕ(−�k, t)〉 (8)

where ϕ(�k, t) is the Fourier transform of ϕ(�r, t). It is straightforward to show that in the
large-N approximation C(�k, t) satisfies the equation [8]

∂C(�k, t)
∂t

− γ kx

∂C(�k, t)
∂ky

= −2�(�k)[k2 + S(t) − 1]C(�k, t) + 2�(�k)T (9)

where

�(�k) = � (NCOP) (10)

�(�k) = �k2 (COP) (11)

and the function S(t) is given self-consistently by

S(t) =
∫

|�k|<q

d�k
(2π)d

C(�k, t) (12)

with q being a high-momentum phenomenological cut-off. For simplicity we have put in
equation (9) b = 1, a = −1 and for the following we set � = 1

2 . This corresponds to a
redefinition of the time, space and field scales.

In order to study the critical behaviour we consider the stationary limit where the structure
factor is time independent. The solution of equation (9), obtained by applying the methods of
characteristics, reads as

C(�k) = lim
t→∞

[
C0 exp

(
−
∫ t

0
Kp(z)[K2(z) + S − 1] dz

)

+T

∫ t

0
Kp(z) exp

(
−
∫ z

0
Kp(s)[K2(s) + S − 1] ds

)
dz

]
(13)

where C0 is a constant value for the structure factor at the initial time, p = 0, 2 for the NCOP
and the COP case, respectively,

S =
∫

|�k|<q

d�k
(2π)d

C(�k) (14)

and

K(s) = �k + γ kx �eys. (15)

When S > 1 only the second integral of the above expression survives in the limit t → ∞.
The self-consistent relation

S =
∫

|�k|<q

d�k
(2π)d

T

∫ ∞

0
Kp(z) exp

[
−
∫ z

0
Kp(s)[K2(s) + S − 1] ds

]
dz (16)

is analogous to the state equation of the φ4-model in the disordered phase in the N → ∞ limit
[10]. Also here, in the limit S → 1+ the integral becomes infrared divergent for d � d

inf
c = 2,

while it tends to a finite value for d � 3. For d � 3, the value S = 1 defines the critical point
of the model with the critical temperature fixed by the relation

1

Tc(γ )
=
∫

|�k|<q

d�k
(2π)d

∫ ∞

0
Kp(z) exp

[
−
∫ z

0
Kp(s)K2(s) ds

]
dz. (17)
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As in the ε-expansion calculations of [4], the critical point of equation (17) is where the inverse
susceptibility 1/C(�k) with kx = 0 vanishes in the limit k → 0 (see equation (9)).

We conclude this section with some considerations on how to fix the ultraviolet cut-off
q. These considerations are pertinent because one expects that the critical temperature, as it
occurs in the N → ∞ limit in the case without shear [10], depends on q. Indeed, if we put
γ = 0 in equation (17), then �K(s) = �k and the integral gives

Tc(0) = 2π2

q
. (18)

We impose that the shear is not effective at the molecular scales fixed by the cut-off. This
assumption can be made quantitative by the following observations. From many experiments
and phenomenological considerations it results that the effects of shear become relevant when
γ t > 1 [2]. A shear time-scale is fixed as τs = 1/γ . In stationary problems, in the disordered
phase, only the fluctuations which decay in a time larger than τs will be affected by the shear.
The relaxation time τ of a fluctuation depends on its wavevector k and a critical value of k can
be defined by the relation τ(kc) = τs [4]. Only the fluctuations with k < kc will be distorted by
the shear flow. For the model defined by equation (2) it is possible to show that kc ∼ γ 1/(2+p)

[4], so that, in fixing the cut-off, the shear will be properly taken into account if

q > kc or qγ
− 1

2+p > 1. (19)

3. The case with conserved dynamics

In this section we calculate the critical temperature of a binary mixture in the COP case with
p = 2. We define the function

g(γ, q) =
∫

|�k|<q

d�k
(2π)d

∫ ∞

0
K2(z) exp

[
−
∫ z

0
K4(s) ds

]
dz (20)

with �K(z) given by equation (15) and K4 ≡ (K2)2. The integral in the argument of
the exponential can be performed and the function g(γ, q) can be written using spherical
coordinates as

g(γ, q) =
∫ q

0

k4

(2π)d
dk
∫

d)
∫ ∞

0
dz [1 + αγ z + βγ 2z2]e−zk4f (γ z)

= γ 1/4
∫ q̄

0

k4

(2π)d
dk
∫

d)
∫ ∞

0
dy [1 + αy + βy2]e−k4h(y) (21)

with d) = dφ sin θ dθ , q̄ = q/γ 1/4, h(y) = yf (y),

f (y) = 1 + αy + (α2 + 2β)
y2

3
+ αβ

y3

2
+ β2 y

4

5
(22)

and

α = sin2 θ sin 2φ β = sin2 θ sin2 φ. (23)

By changing the order of integrations and using equations (17) and (18) we obtain the
result

Tc(0)

Tc(γ )
= g(γ, q)

g(0, q)
≡ g̃(q̄) = 1

16πq̄

∫
d)

∫ ∞

0
dy [1 + αy + βy2]

γ
(

5
4 , q̄

4h(y)
)

h5/4(y)
(24)
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where γ (α, x) = ∫ x

0 dt e−t tα−1 is the incomplete γ -function. It is also useful to introduce the
analytical function γ ∗(α, x) = x−αγ (α, x)/�(α) in terms of which g̃(q̄) can be rewritten as

g̃(q̄) = �
(

5
4

)
16π

q̄4
∫

d)
∫ ∞

0
dz (1 + αz + βz2)γ ∗

(
5

4
, q̄4zf (z)

)
. (25)

The limit q̄ → ∞. In order to evaluate this limit we write

g̃(q̄) = I1(q̄) + I2(q̄) (26)

where

I1(q̄) = �
(

5
4

)
16π

∫
d)

∫ q̄4

0
dz

(
1 + α

z

q̄4
+ β

(
z

q̄4

2
)
γ ∗
(

5

4
, zf

(
z

q̄4

))
(27)

and

I2(q̄) = �
(

5
4

)
16π

q̄4
∫

d)
∫ ∞

1
dz (1 + αz + βz2)γ ∗

(
5

4
, q̄4zf (z)

)
. (28)

We first consider the behaviour of the integral I2(q̄). In the limit x → ∞ γ ∗(α, x) ∼
x−α + O

(
e−x

x

)
[11] so that

I2(q̄) = �
(

5
4

)
16πq̄

∫
d)

∫ ∞

1
dz

1 + αz + βz2

z5/4f (z)5/4
+ O

(
e−q4

q4

)
. (29)

The above integral can be calculated numerically and the result is

I2(q̄) ∼ 0.347 46

q̄
. (30)

The evaluation of I1 is more elaborate. The function γ ∗( 5
4 , zf (z/q̄4)

)
can be written at large

q̄ as a Taylor expansion. Each term of this expansion contributes with terms proportional to
γ ∗( 5

4 , z
)
(z/q̄)n and terms like e−zb2n−1(z)/q̄n, where bs(z) is a polynomial of degree s in z.

Therefore, for large q̄ we can write

I1(q̄) =
∫

d)
∫ q̄4

0

∞∑
k=0

((
z

q̄4

)2k

P2k−1(z, θ, φ) e−z + Ck(θ, φ)γ ∗
(

5

4
, z

)(
z

q̄4

)2k
)

dz (31)

where P2k−1(z, θ, φ) is a polynomial of degree 2k−1 in z and both P2k−1(z, θ, φ) and Ck(θ, φ)

contain polynomials of α and β. In equation (31) only even powers appear since the other
terms give a zero contribution after the integration over the solid angle. The integration in d)
gives

I1(q̄) =
∞∑
k=0

∫ q̄4

0

∞∑
k=0

((
z

q̄4

)2k

p2k−1(z) e−z + ckγ
∗
(

5

4
, z

)(
z

q̄4

)2k
)

dz (32)

where now the p2k−1 are polynomials depending only on z and the ck are real numbers. Then,
using the results∫ q̄4

0
e−zzn dz = n! + O(q̄4ne−q̄ ) (33)

and∫ q̄4

0

(
z

q̄4

)2k

γ ∗
(

5

4
, z

)
dz = 1

q̄

4

8k − 1
− 1

q̄8k

4(2k)!

�
(

5
4

)
(8k − 1)

+ O(q̄8ke−q̄4
) (34)
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it turns out that

I1(q̄) = A

q̄
+

∞∑
k=0

Bk

q̄8k
+ O(q̄8ke−q̄4

). (35)

The coefficients Bk take contributions from the second term of the right-hand side of
equation (34) and from the terms proportional to p2k−1 in equation (32). We have calculated
the first three coefficients with the result

B0 = 1 B1 = −0.057 143 B2 = −0.391 11. (36)

The constant A is given by

A =
∞∑
k=0

4ck

8k − 1
∼ −0.908 35 (37)

where contributions up to k = 5 have been considered and the remainder of the series has been
evaluated as less than 10−6.

Putting together equations (24), (26), (35)–(37) we obtain

g̃(q̄) → 1 − 0.560 89

q̄
− 0.057 14

q̄8
− 0.391 11

q̄16
+ O(1/q̄24). (38)

Figure 1. The critical temperature as a function of the shear rate γ in the COP case. The broken
curve corresponds to the result of equation (38), while the full curve is a numerical evaluation of
the integral of equation (17).
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The critical temperature. From equation (38) it results that the critical temperature behaves
at small γ as (Tc(γ ) − Tc(0))/Tc(0) ∼ γ 1/4. When the other terms of equation (38) are
considered, one obtains the critical curve plotted in figure 1. In figure 1 we also show the critical
temperature (full curve) obtained by the numerical evaluation of the integral (17). There is a
good agreement between the analytical and the numerical results in the range considered with
q̄ > 1. The situation would be different for q̄ < 1 where we have checked that our analytical
results are very poor in describing the behaviour of the integral (17).

4. The NCOP case

When the order parameter is not conserved the critical temperature is given by equation (17)
with p = 0. Repeating the same steps of the above section we arrive at the equation

Tc(0)

Tc(γ )
= c̃(q̃) = �

(
3
2

)
8π

q̃2
∫

d)
∫ ∞

0
dy γ ∗

(
3

2
, q̃2yd(y)

)
(39)

where

d(y) = 1 + 1
2αy + 1

3βy2 (40)

and q̃ = qγ −1/2. Also in this case we can evaluate the expression c̃(q̃) in the limit q̃ → ∞.
As before the function c̃(q̃) can be written as

c̃(q̃) = J1(q̃) + J2(q̃) (41)

where

J1(q̃) = �
(

3
2

)
8π

q̃2
∫

d)
∫ 1

0
dy γ ∗

(
3

2
, q̃2yd(y)

)
(42)

and

J2(q̃) = �
(

3
2

)
8π

q̃2
∫

d)
∫ ∞

1
dy γ ∗

(
3

2
, q̃2yd(y)

)
. (43)

The integral J1 and J2 can be calculated with a procedure similar to that applied in the previous
section. The result is

J2(q̃) = 0.494 81

q̃
+ O

(
e−q̃2

q̃2

)
(44)

J1(q̃) = D

q̃
+

∞∑
k=0

Ek

q̃4k
+ O(q̃4ke−q̃2

). (45)

with D = −0.898 22, E0 = 1, E1 = −0.044 44, E2 = 0 hence

c̃(q̃) → 1 − 0.403 41

q̃
− 0.044 44

q̃4
+ O(1/q̃12). (46)

The above equation implies that at small γ the critical temperature behaves as (Tc(γ ) −
Tc(0))/Tc(0) ∼ √

γ . The full behaviour described by equation (46) is plotted in figure 2
together with the numerical evaluation of the integral.
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Figure 2. The critical temperature in the NCOP case. The broken and full curve describe analytical
and numerical results as in figure 1.

5. Discussion and conclusions

In this paper we have studied the behaviour of the critical temperature of a binary mixture
subject to a shear flow. In both cases with conserved and non-conserved order parameter the
critical temperature is found to grow with the shear rate. A simple analysis, not reported
here, shows that the critical exponents remain the same as in the φ4-model without flow in the
N → ∞ limit. The case with the conserved order parameter describes the behaviour of a fluid
mixture. Equation (38) shows that (Tc(γ ) − Tc(0))/Tc(0) ∼ γ 1/4 at small γ . ε-expansion
results of [4] show that (Tc(γ ) − Tc(0))/Tc(0) ∼ γ 0.54. The different exponent is due to
the use of different approximations. In fluid mixtures one should also consider the effects of
velocity fluctuations not taken into account in this paper. The concentration fluctuations are
enhanced by the coupling with the velocity fluctuations and this produces a lowering of Tc

which competes with the effect described in this paper. The net change of Tc will depend on
the balance between the two effects and varies with the particular system considered.

When the order parameter is not conserved we find that (Tc(γ ) − Tc(0))/Tc(0) ∼ γ 1/2.
We do not know of previous calculations for this case. Moreover, our results show with an
explicit example that the critical temperature of a driven system depends on the dynamics
considered. In particular, the suppression of thermal fluctuations at small γ is more enhanced
in the case with conserved dynamics. It would be interesting to check these observations
outside the framework of the N → ∞ approximation. Finally, we mention that an increase of
the critical temperature is also observed in Ising driven models studied in other contexts [1].
The fact that in our model we do not observe a saturation of the value of the critical temperature
at large values of the imposed field is probably due to the particular approximation used.
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